植物图谱大全(植物学图谱)
1. 植物学图谱
没有五荒本草,应该是《救荒本草》。
《救荒本草》是明朝的专著。
《救荒本草》是一部植物图谱,植物学专著,明永乐四年(1406年)刊刻于开封。记载植物414种,每种配有精美的木刻插图。其中历代本草的有138种,新增276种。按部编目,草类245种、木类80种、米谷类20种、果类23种、菜类46种。作者是朱元璋的儿子,植物学家朱橚。
朱橚(1361年10月8日-1425年9月2日),南直隶凤阳(今安徽凤阳)人。明朝宗室,医学家。明太祖朱元璋第五子,明成祖朱棣的胞弟,生母待考证(因与朱棣同母,且朱棣本身生母存疑,故其生母可能性有二。孝慈高皇后马氏或碽妃)。
洪武三年(1370年)封吴王,洪武十一年(1378年)改封为周王,十四年(1381年)就藩开封。
朱橚好学,能词赋,曾作《元宫词》百章,又组织编著有《救荒本草》《保生余录》《袖珍方》和《普济方》等作品,对我国西南边陲医药事业的发展做出了巨大的贡献。
洪熙元年(公元1425年),薨,谥号“定”。
2. 植物谱系图
【遗传学的产生与发展】
各种考古学资料表明,人类在远古时代就已经知道优良动植物能够产生与之相似的优良后代的现象,并通过选择和培育有用的动植物以用于各种生活目的。公元前8000年到1000年,古埃及人就开始通过饲养瞪羚作为食物,以后又用绵羊和山羊代替瞪羚并用来生产羊奶。在古非洲的尼罗河流域,公元前4000年就有记载人类通过选择和饲养蜜蜂来生产蜂蜜的活动。在植物的选育方面,在我国湖北地区新石器时代末期的遗址中还保存有阔卵圆形的粳稻谷壳,说明人类对植物品种的选育具有更悠久历史。公元前4000年左右,古埃及的石刻上还记载了人们进行植物杂交授粉的情况。但是,这些都仅仅是史前时期的人类对遗传变异现象的观察,或是在生产实践中利用一些遗传、变异性状对动植物进行选择,或许是一种无意识的行为,并没有对生物遗传和变异的机制进行严肃的研究。
公元前5世纪到4世纪,古希腊医师希波克拉底(Hippocrates)及其追随者在生殖和遗传现象以及人类的起源方面作了大量探索,使古希腊人对生命现象的认识逐步从宗教的神秘色彩转向哲学的和原始科学的思维方面来。希波克拉底学派认为,雄性精液首先在身体的各个器官中形成,然后再通过血管运输到睾丸中。这种所谓的具有活性的体液(humor)是遗传特征的载体,是从身体的各个器官采集而来的。如果体液带有疾病,新生儿就表现出先天性缺陷。这种早期的思想就产生了后来由达尔文(C.Darwin,1809—1882)正式提出的泛生说(hypothesisofpangenesis)。
希波克拉底学派的第二种观点认为,双亲的各种生理活动和智理活动都可以传递给子代,使子代具有与亲代相似的能力和特征。体液在亲代体内可以发生变化,所以子代可以遗传其双亲从环境中获得的某些特征。这一观点与19世纪法国学者拉马克(J.B.Larmarck,1744—1829)提出的获得性遗传(inheritanceofacquiredcharacteristics)假说的形成很有关。
古希腊哲学家和自然科学家亚里士多德(Aristotle,公元前384年—322年)对人类起源和人体遗传作了比希波克拉底学派更广泛的分析,他是泛生说形成的重要人物之一。他认为雄性的精液是从血液形成的,而不是从各个器官形成的。精液含有很高能量,这种能量作用于母体的月经,使其形成子代个体。
古希腊的希波克拉底学派和亚里士多德的观点今天看起来似乎很天真、幼稚,但由于在当时并未发现精、卵细胞,直到1827年卵细胞才被发现,因此这种对遗传现象的解释在当时乃至以后几个世纪都产生了重要影响。由于他们都认为遗传是通过双亲进行的,并受到位于不同单位中遗传信息的控制,这些观点在遗传学系统理论的形成和发展过程中占有突出地位。因为任何一个学科的形成都不是偶然的,都离不开前人为这一学科产生所做出的大量先驱性工作。
从17世纪开始直到19世纪,人们对生命现象的探索便进入了实验生物学的时代。18世纪瑞典分类学家林奈(C.Linnaeus,1707—1778)建立了动物和植物的系统分类学,并创立了双名法,这对于后来进行动、植物育种和杂交试验提供了选择亲本的重要依据,起到了积极作用。但是,他认为物种是神创造的即所谓特创论(specialcreation),物种是固定不变的(fixityofspecies)。这对于遗传学的形成和发展又起了消极作用,使一些从事杂交工作的研究者不能正确认识他们的试验结果和从中发现遗传规律。
18世纪的德国植物育种学家柯尔络特(J.G.Kolreuter,1733—1806)就是受林奈思想影响很深的人之一。柯尔络特被认为世界上第一个通过杂交育种、成功地培育出植物品种的人。他首先将两组不同烟草植株杂交,然后再将杂交种反复与其亲本之一进行回交,培育出新的烟草品种。在另一组石竹属植物的育种试验中,他清楚地观察到了性状的分离现象,但由于他相信特创论和物种不变论的思想,致使对自己的研究结果产生了矛盾心理,而不能正确认识其在科学上的重要意义。
法国学者拉马克总结了古希腊哲学家的思想,在1809年发表的《动物的哲学》(PhilosophieZoologique)一书中提出了与林奈物种不变论相反的观点,认为动物器官的进化取决于用与不用即用进废退理论(doctrineofuseanddisuse)。拉马克还认为每一世代中由于用和不用而加强或削弱的性状是可以遗传的即获得性遗传。如鼹鼠没有视力是由于其祖先长期生活在黑暗洞穴,无须使用眼睛。这样,它们的眼睛逐代退化并遗传下去,最后鼹鼠就完全丧失了视力。
英国生物学家达尔文曾随“贝格尔”号战舰进行了5年的环球旅行和生物学考查,广泛研究了生物遗传、变异和进化的关系,于1859年发表了《物种起源》(TheOriginofSpecies)的著作,提出了生物通过生存斗争(struggleforexistence)以及自然选择的进化理论。他认为生物在长时间内累积微小的有利变异,当发生生殖隔离后,就形成了一个新物种,然后新物种又继续发生进化变异。达尔文的进化论是19世纪自然科学中最伟大的成就之一,它不仅否定了物种不变的谬论,而且有力地论证了生物由简单到复杂、由低级到高级的进化过程。
达尔文的进化理论没有对生物遗传和变异的遗传学基础进行论述,他在1868年发表的第二部著作《在驯养下动物和植物的变异》(VariationsofAnimalsandPlantsunderDomestication)中试图对这一不足作出明确解释,但他重提了“泛生说”和“获得性遗传”的观点。达尔文认为在动物的每一个器官里都存在称为胚芽(gemule)的单位,它们通过血液循环或体液流动聚集到生殖细胞中。当受精卵发育成为成体时,胚芽又进入各器官发生作用,因而表现出遗传现象。胚芽还可对环境条件作出反应而发生变异,表现出获得性遗传。达尔文的这些观点也完全是一些没有事实依据的假设。
德国生物学家魏斯曼(A.Weisman,1834-1914)支持达尔文有关进化的选择论,但反对获得性遗传。他于1892年提出了种质连续论(theoryofcontinuityofgermplasm),把生物体分成体质(somatoplasm)和种质(germplasm)。种质是独立的、连续的,能产生后代的种质和体质,而体质则不能产生种质。环境只影响体质,故由环境引起的变异是不遗传的即获得性不能遗传。遗传的是种质而不是体质。种质论在生物科学中产生了广泛影响,直到今天的遗传学研究和动、植物育种仍沿用了种质论的某些观点。但是,魏斯曼将生物体绝对地划分为种质和体质是片面的,而且今天的大量遗传学研究和分子生物学研究证明,某些获得性也是可以遗传的。
真正科学地、有分析地研究遗传与变异是从孟德尔(G.J.Mendel,1822—1884)开始的。孟德尔是奥地利布隆(Brünn)的一位天主教修道士,同时也是一所中学的代课教师。他于1856—1864年在他所在修道院的小花园内对豌豆(Pisumsativum)进行了杂交实验,于1865年在当地召开的自然科学学会上宣读了试验结果。他认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。他从试验中得到的结论是形成今天科学遗传学的基石,所以他被公认为是遗传学的创始人。
已如前述,孟德尔并不是第一个从事植物杂交试验的人,但他是第一位从生物体的单个性状出发,分析其试验结果的人。孟德尔采用科学的方法设计实验,对杂交结果进行计数和分类,并采用数学模式对各种比例进行比较分析,然后针对各种差异提出假说。接着,他根据初步试验结果和假设,准确预测有关遗传单位的传递方式,最后再根据后来的杂交结果证明他所作假设的正确性。孟德尔的研究方法和提出的学说是比较先进的和科学的,特别是他的思维方法至今仍然是科学工作者学习的榜样。
但是,孟德尔的理论在当时并未受到重视,直到1900年,他的论文才得到3个不同国家的3位植物学家的注意。他们分别是荷兰的迪·弗里斯(H.deVries),他研究月见草和玉米;德国的柯伦斯(C.Correns),他研究玉米、豌豆和菜豆;奥地利的切尔马克(E.vonS.Tschermak),他研究豌豆等数种植物。他们3人都从自己独立的研究中获得了孟德尔原理的证据。当他们在收集资料、引用文献时都发现了孟德尔的论文。从此,孟德尔的成就才得到广泛重视。从这以后,许多学者都按照孟德尔的理论和研究方法对动、植物的遗传现象进行了广泛深入的研究,使遗传学研究得到迅速发展。因此,人们把1900年孟德尔论文被重新发现之时定为遗传学形成和建立的开端。
1905年英国人贝特逊(W.Bateson)依据希腊“生殖”(generate)一词给遗传学正式定名(genetics)。贝特逊除了给遗传学进行科学定名外,还将孟德尔最初提出的控制一对相对性状的遗传因子定名为等位基因(allelomorph,后缩写为allele)。1903年萨顿(W.S.Sutton)发现染色体行为与遗传因子的行为一致,于是提出了染色体是遗传因子的载体的观点。1909年丹麦遗传学家约翰逊(W.L.Johannson)提出用基因(gene)一词代替孟德尔的遗传因子。基因一词由达尔文的泛子(pangen)的最后一个音节衍生而来。至今,遗传学中广泛使用等位基因和基因这两个名词。等位基因是指控制一对有相对差异的两种特征的遗传单位,而基因则是指控制某一特征发育的遗传单位。1910年左右,美国遗传学家摩尔根(T.H.Morgan)及其同事根据对普通果蝇的研究,确定了基因是染色体上的分散单位,在染色体上呈直线排列,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学(cytogenetics)。
就在孟德尔规律被重新发现的1900年,英国医生、生物化学家加罗德(A.E.Garrod)根据对人体的一种先天性代谢疾病尿黑酸症(alkaptonuria)的研究,认为这种疾病是由于单个基因发生突变后,产生一种不具功能的产物,从而导致代谢障碍。加罗德的这种一个突变基因决定一种代谢障碍的观点在当时也并未受到广泛注意,直到1941年,比德尔(G.W.Beadle)和他的老师泰特姆(E.L.Tatum)对红色面包霉(Neurospora)的生化突变型进行研究时,才发现了加罗德的工作,明确提出了“一个基因一种酶”(onegene-oneenzyme)的理论。后来“一个基因一种酶”又被修改成较准确的概念即“一个基因一种多肽(onegene-onepolypeptide)。
基因究竟是由什么物质组成的呢?这是自孟德尔规律被发现以来人们一直探索的问题。早在1869年,一位瑞士医生米切尔(F.Miescher)就宣称自己从脓细胞中分离到了核酸。时隔30多年以后,美国的细胞生物学家威尔逊(E.B.Wilson)又发现了核酸,证明它是染色体的重要组成成分,并指出它可能是遗传物质。1944年,埃弗里(O.T.Avery)等从肺炎双球菌(Diplococcuspneumoniae)的转化试验中又直接证明了脱氧核糖核酸(DNA)是遗传物质。直到1953年,沃森(J.D.Watson)和克里克(F.H.C.Crick)提出了DNA的双螺旋结构模型,这一成就才为进一步阐明DNA的结构、复制和遗传物质如何保持世代连续的问题奠定了基础。埃弗里及沃森等人的研究开创了分子遗传学这一新的学科领域,不仅使遗传学,而且使整个生物学跨入了一个新纪元。
今天,遗传学已是一门成熟的、非常有活力的学科,被认为是现代生物学的核心。它是自孟德尔奠基以来,人类对生命本质认识的集体智慧的结晶,世界上许多科学家都对遗传学的发展做出了杰出贡献。现代遗传学的发展非常迅速,特别是在高等真核生物包括人体的发育、细胞分化、记忆、衰老及信号转导等分子机制的研究,以及结构基因组和功能基因组研究方面,几乎每年都有突破。
【遗传学研究的领域】
遗传学研究的领域非常广泛,包括病毒、细菌、各种植物和动物以及人体等所有生命形式。研究手段从分子水平、染色体水平直到群体水平。但现代遗传学的研究领域一般可划分成4个主要分支,即传递遗传学(transmissiongenetics)、细胞遗传学(cytogenetics)、分子遗传学(moleculargenetics)和生统遗传学(biometricalgenetics)。各个分支领域之间相互联系、相互重叠、相互印证,它们又组成了一个不可分割的整体。
传递遗传学是最经典的研究领域,它研究遗传特征从亲代到子代的传递规律。我们可以将具有不同特征的个体进行交配,通过对几个连续世代的分析,研究性状从亲代传递给子代的一般规律。但在对人体进行研究时,则采用谱系分析,即通过对多个世代的调查,追踪某种遗传特征的传递方式,估测其遗传模式。由于这种研究方法首先是从孟德尔开始的,所以这一遗传学分支又称为经典遗传学(classicalgenetics)。
细胞遗传学是通过细胞学手段对遗传物质进行研究。在这一领域中使用最早的工具是光学显微镜。20世纪初,就是利用光学显微镜发现了细胞有丝分裂(mitosis)和减数分裂(meiosis)过程中染色体及其行为的。染色体及其在细胞分裂过程中行为特征的发现不仅对孟德尔规律的再发现和被承认起到了重要作用,而且还奠定了遗传的染色体理论基础。染色体理论在20世纪上半叶遗传学研究中起着主导作用,它认为染色体是基因的载体,是传递遗传信息的功能单位。所以,有人把其中专门研究染色体变化与遗传变异的关系以及基因在染色体上定位等内容称为染色体遗传学(chromosomalgenetics)。后来,随着电子显微镜的发明,我们已能够直接观察遗传物质的结构特征及其在基因表达过程中的行为,使细胞遗传学的研究视野扩大到分子水平。
分子遗传学是从分子的水平上对遗传信息进行研究。它研究遗传物质的结构特征、遗传信息的复制、基因的结构与功能、基因突变与重组及基因的调节表达等内容,是遗传学中最活跃、发展最迅速的一大分支。对遗传信息在分子水平上进行研究始于20世纪40年代。虽然开始的研究对象只是细菌和病毒,但现在我们已经知道了许多真核生物遗传信息的特征、复制和调节表达机制。到70年代,随着重组DNA(recombinantDNA)技术的发明与应用,我们可以在实验室内有目的地将任何生物的基因拼接到细菌或病毒DNA上,进行大量克隆(cloning)即在离体条件下扩增目的基因。DNA重组技术在分子遗传学研究方面是一种使用广泛的、非常重要的基本技术,它不仅使基因研究不断向理论的纵深发展,而且还对医学和农业具有重要的实用意义。
生统遗传学是一门用数理统计学方法来研究生物遗传变异现象的分支学科。根据研究的对象不同,又可分为数量遗传学(quantitativegenetics)和群体遗传学(populationgenetics)。前者是研究生物体数量性状即由多基因控制的性状遗传规律的分支学科,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化的学科。生统遗传学传统上是依据群体中不同个体所表现出来的特征即表型来研究遗传和变异,但现在正在逐步向研究群体内分子水平变异的方向发展。
3. 常见植物图谱
中国10种常见外来入侵植物:
1、空心莲子草2、紫茎泽兰3、一枝黄花4、飞机草5、互花米草
6、薇甘菊7、豚草8、毒麦9、风眼莲10、马缨丹
4. 植物学图鉴
《植物学》学习植物分类和识别特征,《植物生理学》学习植物的生理活动,除了这两本比较系统专业的书籍外,还可以看一些植物图鉴之类的书。
5. 植物学图解
钥匙的英文写作“key”,读作[kiː]
1、key释义
钥匙
关键;秘诀,要领
(解决问题等的)方法,手段;线索
(试题等的)解答,答案;解释;说明
谜底
(外语书的)直译本
(钢琴等的)键
图例,图解;(辞书等的)符号表,略语表
(地理上的)要冲;关隘;门户
(对事物的)支配权
声调;(文章等的)格调,基调,风格
(感情等的)激烈程度
(图画、照片等的)基本色调
必不可少(或重要)的人(或物)
【音乐】调,音调;基调;主音调
【机械学】
楔,栓,销
(上钟表发条等的)钥匙,扳手
【建筑学】拱顶石;底层灰泥
【电工学】电键,电钥
(广告上的)索引标号
【植物学】翅果
【生物学】检索表
[复数]【宗教】精神权威;教皇的神权;(天国的)钥匙
【篮球】罚球区
2、例句
Please duplicate this key for me.
请照这把钥匙为我配一把。
He concealed the key inside his tie.
他把钥匙藏在领带里面。
He jumbled up everything in the drawer to find his key.
他为了找到他的钥匙把整个抽屉都翻乱了。
I can't force the key into this lock, it won't fit.
我无法将钥匙插入这个锁孔,这把钥匙不配这把锁。
I've lost the key of my house, so I'll have to force an entry.
我把房门钥匙丢失了,因此我只能强行进入了。
6. 药用植物学图谱
忍冬(学名:Lonicera japonica Thunb.)(名医别录),别称: 金银花(本草纲目),金银藤(江西铅山、云南楚雄),银藤(浙江临海、江苏),二色花藤(上海),二宝藤、右转藤(四川),子风藤(浙江丽水),蜜桷藤(江西铅山),鸳鸯藤(福建),老翁须(常用中草药图谱)。
忍冬忍冬科,忍冬属多年生半常绿缠绕灌木。带叶的茎枝名忍冬藤,供药用。亦作观赏植物。
7. 植物 图谱
欧亚大陆植物欧亚旋覆花
欧亚旋覆花(学名:Inula britanica L.)是菊科旋覆花属植物,多年生草本,高(15)20-70厘米。根状茎短,具多数须根。茎直立,单生,被伏柔毛,上部分枝。叶长圆形或长圆状披针形或广披针形,头状花序1-5,生于茎顶枝端;苞叶线形或长圆状线形,花序梗细,密被短毛或近无毛;花期8-9月,果期9-10月。
该种是欧亚寒温带和温带地区的广布种,在分枝的多少,叶的大小和形状,头状花序的大小和数目,舌片的长短等方面都有显著的变异,曾被分为许多的变种和亚种。
8. 中国植物学图库
学室内设计其实并不难 需要的是时间的积累和丰富的实践
现在外面有很多课程是教你如何去设计 如何去跟客户沟通 都是一些书本的理论知识 真的想学 我倒是建议去当地一些比较中等的装修公司里面去实习 为什么是中等的 名气比较大的平时都是做一些小活 基本接触不到不到客户 只能做图库的搬运工 没名气的可想而知 更接触不到客户 还没事情做
去装修公司里了就从最基本的学习 先是去量房 量完回来画结构图 基本一个星期就能入门 第二就开始布置平面图 平面图的话刚开始可以按部就班 户型什么样子 你就去布置成什么样子 等熟练了你就可以开始砸墙去完成自己的构思了 后面还要学习的还有很多 比如吊顶图 开关图 插座图 立面图等等 都是需要一点一点学的
还有就是预算 室内设计平面上的基本还是简单的 预算上面的项目 比如敲墙砌墙的尺寸啊 黄墙绿地的平方啊等等 要知道这东西是什么 都要不断的去工地看师傅他们做 我刚开始去工地 看师傅他们在贴砖 我就在边上帮忙活水泥 他们开心了就会跟你讲一些他们的经验 这也是你的经验
总的来说 装修这行 不能三分钟热度 这个一两年就熬不下去了 好长时间的积累
相信你会活成自己喜欢的样子 加油!
9. 植物图鉴百科
玫瑰是西方文学中的常出现的植物,王尔德在《夜莺与玫瑰》中所写的:“我读了所有智者写的书,掌握了哲学的所有秘密,可就是因为缺少一朵红玫瑰,生活就变得痛苦不堪。”
在英国文学史上,莎士比亚是当仁不让的玫瑰诗人。他的商籁中上演着犬蔷薇与大马士革玫瑰之战,也上演着红玫瑰与白玫瑰之战,同时还隐藏都铎王朝一段惊人的政治阴谋。
而在德语文学中的玫瑰诗人里尔克漂泊的一生中,玫瑰也扮演着重要的角色。无论是晚年一蹴而就写成的《致俄耳甫斯的十四行诗》,还是法语诗集《玫瑰集》,甚至是那如谜般的墓志铭,玫瑰都长久地绽放,吐纳着芬芳。
到了法国诗人奈瓦尔那首咏叹了“从摇篮到棺木”的爱情的十四行诗中,玫瑰甚至迷失了她的身份:
玫瑰它既是纯净透明的,又是暧昧不皦的,它既是奋不顾身的爱的付出,又是蜇人心痛的爱的苦楚。它丰富的象征意义,引来无数诗人如蜜蜂般从中采集花蜜。它也成为许多人幸福或痛苦的原因。
10. 植物知识图谱
采食野生植物最大的问题是如何鉴别有毒或无毒。
最简单的办法,将采集到的植物割开一个口子,放进一小撮盐,观察这个口子是否改变原来的颜色,变色的不能食用。《中国野菜图谱》总结了几种较为简便的鉴别方法: ⑴取植物幼嫩部分少许,在嘴中用前齿嚼碎后以舌尖品尝是否有苦涩、辛辣及其他异味。如果怪味很浓则有可能有毒,应立即吐掉再漱口。涩味表示有单宁,苦味则可能含有毒生物碱、配糖体等有害物。⑵因一些有害物质(单宁、生物碱)可以溶于水,所以可将植物用开水烫后清水浸5~6小时或煮熟,再品尝是否还有怪味。此时如苦涩、怪味依然存在则不可食用。⑶在煮后的植物汤水中加入浓茶,若产生大量沉淀,则表示内含重金属盐或生物碱,不可食用。煮后的汤水经振摇后产生大量泡沫者,则表示含有皂甙类物质,不可食用。⑷一般牲畜可食用的饲料,人基本都可食用。物别是几种牲畜都喜爱的饲料,肯定无毒。⑸在缺乏以上一切鉴别工具及手段时,亦可少量试尝某种植物,若8~12小时内身体无头晕、恶心、头痛、腹痛、腹泻等中毒症状时,再大量食用。鉴别植物是否有毒是复杂的,最可靠的方法是根据有关部门编绘的可食野生植物的图谱进行认真鉴别。但身处荒郊野外,则只能靠在平时掌握的可食野生植物的种类、分布及采食方法采食。